Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula
نویسندگان
چکیده
The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.
منابع مشابه
Seasonal Shifts in Bacterial Community Responses to Phytoplankton-Derived Dissolved Organic Matter in the Western Antarctic Peninsula
Bacterial consumption of dissolved organic matter (DOM) drives much of the movement of carbon through the oceanic food web and the global carbon cycle. Understanding complex interactions between bacteria and marine DOM remains an important challenge. We tested the hypothesis that bacterial growth and community succession would respond differently to DOM additions due to seasonal changes in phyt...
متن کاملDifferent Oceanographic Regimes in the Vicinity of the Antarctic Peninsula Reflected in Benthic Nematode Communities
Marine free-living nematode communities were studied at similar depths (~500 m) at two sides of the Antarctic Peninsula, characterised by different environmental and oceanographic conditions. At the Weddell Sea side, benthic communities are influenced by cold deep-water formation and seasonal sea-ice conditions, whereas the Drake Passage side experiences milder oceanic conditions and strong dyn...
متن کاملSeasonal Variations of Seawater Properties in the Southwestern Coastal Waters of the Caspian Sea
Seasonal variations of the seawater properties (e.g. temperature, salinity, density and chlorophyll-a) in western part of the southern coastal waters of the Caspian Sea near the Iranian coast were studied. A portable CTD probe was applied for profiling from sea surface to bottom at 23 stations. Maximum depth of the profiling stations was more than 470 m in the study area. Vertical structure of ...
متن کاملAlteration of the food web along the Antarctic Peninsula in response to a regional warming trend
In the nearshore coastal waters along the Antarctic Peninsula, a recurrent shift in phytoplankton community structure, from diatoms to cryptophytes, has been documen ted. The shift was observed in consecutive years (1991–1996) during the austral summer and was correlated in time and space with glacial melt-water runoff and reduced surface water salinities. Elevated temperatures along the Penin...
متن کاملGlacial meltwater dynamics in coastal waters west of the Antarctic peninsula.
The annual advance and retreat of sea ice has been considered a major physical determinant of spatial and temporal changes in the structure of the Antarctic coastal marine ecosystem. However, the role of glacial meltwater on the hydrography of the Antarctic Peninsula ecosystem has been largely ignored, and the resulting biological effects have only been considered within a few kilometers from s...
متن کامل